57 research outputs found

    Semantic technologies for open interaction systems

    Get PDF
    Open interaction systems play a crucial role in agreement technologies because they are software devised for enabling autonomous agents (software or human) to interact, negotiate, collaborate, and coordinate their activities in order to establish agreements and manage their execution. Following the approach proposed by the recent literature on agent environments those open distributed systems can be efficiently and effectively modeled as a set of correlated physical and institutional spaces of interaction where objects and agents are situated. In our view in distributed open systems, spaces are fundamental for modeling the fact that events, actions, and social concepts (like norms and institutional objects) should be perceivable only by the agents situated in the spaces where they happen or where they are situated. Institutional spaces are also crucial for their active functional role of keeping track of the state of the interaction, and for monitoring and enforcing norms. Given that in an open distributed and dynamic system it is fundamental to be able to create and destroy spaces of interaction at run-time, in this paper we propose to create them using Artificial Institutions (AIs) specified at design time. This dynamic creation is a complex task that deserves to be studied in all details. For doing that, in this paper, we will first define the various components of AIs and spaces using Semantic Web Technologies, then we will describe the mechanisms for using AIs specification for realizing spaces of interaction. We will exemplify this process by formalizing the components of the auction Artificial Institution and of the spaces created for running concrete auction

    Defining interaction protocols using a commitment-based agent communication language

    Get PDF

    Agent communication and artificial institutions

    Get PDF
    In this paper we propose an application-independent model for the definition of artificial institutions that can be used to define open multi-agent systems. Such a model of institutional reality makes us able also to define an objective and external semantics of a commitment-based Agent Communication Language (ACL). In particular we propose to regard an ACL as a set of conventions to act on a fragment of institutional reality, defined in the context of an artificial institution. Another contribution of the work presented in this paper is an operational definition of norms, a crucial component of artificial institutions. In fact in open systems interacting agents might not conform to the specifications. We regard norms as event-driven rules that when are fired by events happening in the system create or cancel a set of commitments. An interesting aspect of our proposal is that both the definition of the ACL and the definition of norms are based on the same notion of commitment. Therefore an agent capable of reasoning on commitments can reason on the semantics of communicative acts and on the system of norm

    An operational approach to norms in artificial institutions

    Get PDF
    The notion of artificial institution is crucial for the specification of open and dynamic interaction frameworks where heterogeneous and autonomous agents can interact to face problems in various fields, like for instance electronic commerce, business-to-business (B2B) applications, and personal assistant applications. In our view the specification of artificial institutions requires a clear standard definition of some basic concepts: the notion of ontology, authorizations, conventions, and norms. In this paper we propose an operational approach to the definition of norms that is mainly based on the generation of commitments. These norms can be employed to verify if the interacting agents are behaving in accordance with the normative specification of the system. In particular we regard norms as event-driven rules that are fired by events happening in the system and then modify commitments affecting the agents having a certain role. We will discuss the crucial differences between the notion of authorization and permission and how the notion of permissions, obligations, and prohibitions can be expressed in our model. We will investigate the connections among the specification of different artificial institutions, in particular how an institution can enrich or further regulate the entities defined in another one. Finally we will briefly present the specification of the Dutch Auction Institution and of the Auction House Institution in order to exemplify the model presented in this paper

    Interaction and communication among autonomous agents in multiagent systems

    Get PDF
    The main goal of this doctoral thesis is to investigate a fundamental topic of research within the Multiagent Systems paradigm: the problem of defining open, heterogeneous, and dynamic interaction frameworks. That is to realize interaction systems where multiple agents can enter and leave dynamically and where no assumptions are made on the internal structure of the interacting agents. Such topic of research has received much attention in the past few years. In particular the need to realize applications where artificial agents can interact negotiate, exchange information, resources, and services has become more and more important thanks to the advent of Internet. I started my studies by developing a trading agent that took part to an international trading on-line game: the First Trading Agent Competition (TAC). During the design and development phase of the trading agent some crucial and critical troubles emerged: the problem of accurately understanding the rules that govern the different auctions; and the problem of understanding the meaning of the numerous messages. Another general problem is that the internal structure of the developed trading agent have been strongly determined by the peculiar interface of the interaction system, consequently without any changes in its code, it would not be able to take part to any other competition on the Web. Furthermore the trading agent would not have been able to exploit opportunities, to handle unexpected situations, or to reason about the rules of the various auctions, since it is not able to understand the meaning o the exchanged messages. The presence of all those problems bears out the need to find a standard common accepted way to define open interaction systems. The most important component of every interaction framework, as is remarked also by philosophical studies on human communication is the institution of language. Therefore I start to investigate the problem of defining a standard and common accepted semantics for Agent Communication Languages (ACL). The solutions proposed so far are at best partial, and are considered as unsatisfactory by a large number of specialists. In particular, they are unable to support verifiable compliance to standards and to make agents responsible for their communicative actions. Furthermore such proposals make the strong assumption that every interacting agent may be modeled as a Belief-Desire-Intention agent. What is required is an approach focused on externally observable events as opposed to the unobservable internal states of agents. Following Speech Act Theory that views language use as a form of action, I propose an operational specification for the definition of a standard ACL based on the notion of social commitment. In such a proposal the meaning of basic communicative acts is defined as the effect that it has on the social relationship between the sender and the receiver described through operation on an unambiguous, objective, and public "object": the commitment. The adoption of the notion of commitment is crucial to stabilize the interaction among agents, to create an expectation on other agents behavior, to enable agents to reason about their and other agents actions. The proposed ACL is verifiable, that is, it is possible to determine if an agent is behaving in accordance to its communicative actions; the semantics is objective, independent of the agent's internal structure, flexible and extensible, simple, yet enough expressive. A complete operational specification of an interaction framework using the proposed commitment-based ACL is presented. In particular some sample applications of how to use the proposed framework to formalize interaction protocols are reported. A list of soundness conditions to test if a protocol is sound is proposed

    Artificial institutions: a model of institutional reality for open multiagent systems

    Get PDF
    Software agents' ability to interact within different open systems, designed by different groups, presupposes an agreement on an unambiguous definition of a set of concepts, used to describe the context of the interaction and the communication language the agents can use. Agents' interactions ought to allow for reliable expectations on the possible evolution of the system; however, in open systems interacting agents may not conform to predefined specifications. A possible solution is to define interaction environments including a normative component, with suitable rules to regulate the behaviour of agents. To tackle this problem we propose an application-independent metamodel of artificial institutions that can be used to define open multiagent systems. In our view an artificial institution is made up by an ontology that models the social context of the interaction, a set of authorizations to act on the institutional context, a set of linguistic conventions for the performance of institutional actions and a system of norms that are necessary to constrain the agents' action

    Artificial institutions: a model of institutional reality for open multiagent systems

    Get PDF
    Software agents’ ability to interact within different open systems, designed by different groups, presupposes an agreement on an unambiguous definition of a set of concepts, used to describe the context of the interaction and the communication language the agents can use. Agents’ interactions ought to allow for reliable expectations on the possible evolution of the system; however, in open systems interacting agents may not conform to predefined specifications. A possible solution is to define interaction environments including a normative component, with suitable rules to regulate the behaviour of agents. To tackle this problem, we propose an application-independent model of artificial institutions that can be used to define open multiagent systems. With respect to other approaches to artificial (or electronic) institutions, which mainly focus on the definition of the normative component of open systems, our proposal has a wider scope, in that we model the social context of the interaction, define the semantics of an Agent Communication Language to operate on such a context, and give an operational definition of the norms that are necessary to constrain the agents’ actions. In particular, we define the semantics of a library of communicative acts in terms of operations on agents’ social reality, more specifically on commitments, and regard norms as event-driven rules that, when fired by events happening in the system, create or modify a set of commitments. An interesting aspect of our proposal is that both the definition of the ACL and the definition of norms are based on the same notion of commitment. Therefore an agent capable of reasoning on commitments can reason both on the semantics of communicative acts and on the normative system

    Formal specification of artificial institutions using the event calculus

    Get PDF
    The specification of open interaction systems, which may be dynamically entered and left by autonomous agents, is widely recognized to be a crucial issue in the development of distributed applications on the internet. The specification of such systems involves two main problems: the first is the definition of a standard way of specifying a communication language for the interacting agents and the context of the interaction; the second, which derives from the assumption of the agents' autonomy, is finding a way to regulate interactions so that agents may have reliable expectations on the future development of the system. A possible approach to solve those problems consists in modelling the interaction systems as a set of artificial institutions. In this chapter we address this issue by formally defining, in the Event Calculus, a repertoire of abstract concepts (like commitment, institutional power, role, norm) that can be used to specify artificial institutions. We then show how, starting from the formal specification of a system and using a suitable tool, it is possible to simulate and monitor the systems evolution through automatic deduction

    Big data and virtual communities: methodological issues

    Get PDF
    Virtual communities represent today en emergent phenomenon through which users get together to create ideas, to obtain help from one another, or just to casually engage in discussions. Their increasing popularity as well as their utility as a source of business value and marketing strategies justify the necessity of defi ning some specifi c methodologies for analyzing them. The aim of this paper is providing new insights into virtual communities from a methodological viewpoint, highlighting the main trends and challenge

    Regulated MAS: Social Perspective

    Get PDF
    This chapter addresses the problem of building normative multi-agent systems in terms of regulatory mechanisms. It describes a static conceptual model through which one can specify normative multi-agent systems along with a dynamic model to capture their operation and evolution. The chapter proposes a typology of applications and presents some open problems. In the last section, the authors express their individual views on these mattersMunindar Singh’s effort was partially supported by the U.S. Army Research Office under grant W911NF-08-1-0105. The content of this paper does not necessarily reflect the position or policy of the U.S. Government; no official endorsement should be inferred or implied. Nicoletta Fornara’s effort is supported by the Hasler Foundation project nr. 11115-KG and by the SER project nr. C08.0114 within the COST Action IC0801 Agreement Technologies. Henrique Lopes Cardoso’s effort is supported by Fundação para a Ciência e a Tecnologia (FCT), under project PTDC/EIA-EIA/104420/2008. Pablo Noriega’s effort has been partially supported by the Spanish Ministry of Science and Technology through the Agreement Technologies CONSOLIDER project under contract CSD2007-0022, and the Generalitat of Catalunya grant 2009-SGR-1434.Peer Reviewe
    • …
    corecore